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Yang’s model of charged particle scattering with energy loss
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Yang’s model [Phys. Rev. Lett. 84, 599 (1951)] for the scattering of charged particles assumes a con-
stant energy for the penetrating particles. This constraint has been removed in this work by allowing the
loss of particle energy to be proportional to the depth of penetration. Exact solutions are found in the
form of convergent series for cases I and II defined by Yang. The consistency of these solutions with

Yang’s solutions for constant energy is verified.

PACS number(s): 05.60.+w

I. INTRODUCTION

In a review of cosmic ray theory, Rossi and Greisen [1]
cite Fermi as deriving a simple transport equation
describing the penetration of charged particles through a
scattering medium, and providing a complete solution for
the particle distribution. This derivation assumed small-
angle scattering with randomly distributed scattering
centers and a constant energy for the penetrating parti-
cles. Eyges [2] removed this constant energy constraint
by deriving a solution to the transport equation which al-
lowed the particle energy to be a function of the penetra-
tion depth. Then Yang [3], while again assuming a con-
stant energy for the penetrating charged particles, im-
proved upon the earlier work of Fermi by accounting for
the difference between the depth achieved by a particle
and the actual path length it traveled. This difference was
coined the ‘“‘excess path length.” A general solution for
the joint distribution function of angle, position, and ex-
cess path length was not provided by Yang [3]. However,
conditional solutions for two cases of interest, termed
case I and case II, were given by him. Case I describes
the excess path length distribution at a given depth of all
electrons, while case II describes the excess path length
distribution at a given depth for electrons traveling per-
pendicularly to the surface of the scattering medium. In
a parallel development Spencer and Coyne [4] derived ap-
proximate solutions to the Lewis equation [5], and under
the conditions of small-angle scattering obtained expres-
sions analogous to the first term of the Yang series solu-
tions but with energy loss included. Finally, Nakatsuka
[6], again assuming a constant energy for the penetrating
charged particle, provided an approximate solution of the
Yang transport equation.

This paper provides exact solutions to the Yang trans-
port equation [3] for his cases I and II when the particle
energy is allowed to be a linear function of the penetra-
tion depth.

II. DESCRIPTION OF THE PROBLEM

In the classical theory of angular scattering for charged
particles originally presented by Fermi [1,2], the assump-
tion of small cumulative change of angle is imposed, and
the angular process is modeled by a random walk on the
plane. In the limit of infinitesimally small steps and an
infinitely large number of collisions (i.e., in the diffusional
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limit) this angular process is equivalent to a two-
dimensional Brownian motion on the plane. This means,
in particular, that the projected angles of travel ®, and
®, are independent, one-dimensional Brownian motions.
The processes ®, and ©, in turn determine the stochas-
tic evolutions of the lateral coordinates x and y of the
scattered particle, as well as its projected excess path
lengths €, and ¢,. To determine these evolutions one
only needs to use the geometrical formulas [1,3] which re-
late variable ®, with x and &,, and variable ®, with y
and ¢, respectively. The standard description of the evo-
lution of processes @, , ®y, X, Y, €, and €, with depth z is
given by their joint probability density distribution func-
tion F (z,x,y,(*)x,®y,sx,ey ). Due to the independence of
6, and Gy the function F (z,x,9,0,,0,,¢,,€,) is separ-
able into the product

F(z,x,y,0,,0,,¢,,e,)=F(z,x,0,,e,)F(z,y,0,,t,) ,

y)

where F(z,x,0,,¢,) and F(z,y,0,,¢,) denote the joint
probability density functions of the projected motions of
a particle on the (z,x) and (z,y) planes, respectively.
Thus, without loss of generality, we can investigate the
transport equation for processes ®,, x, and €, alone, and
write [3]
OF __g OF  k OF g OF

dz * 3x * 4 302 70% de, (12)
where F is a function of z, x, ®,, and €, and parameter k
is the linear angular scattering power [1,7]. In the
nomenclature of stochastic process theory, the parameter
k has the meaning of one half the value of the diffusion
constant for the process ®,(z). In Yang’s original paper,
k was assumed to be a constant. In general, k depends
upon the atomic number of the scattering medium and
the energy of the penetrating particle as follows:

X

mocHE +mye?)

k(E)=k
(E)=ko E(E +2mc?)

, (1b)

where myc? stands for the rest mass energy (0.511 MeV)
of the electron, e is the electronic charge, and the scatter-
ing constant k is given by

16me*

ko=—""—==S N,Z/(Z,+1)In(204Z,'3) ,
0 (mocz)zg i 1( i )n( i
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where N, is the number of atoms per unit volume of ele-
ment Z; in the scattering medium. For broad electron
beams incident upon water, the most probable energy loss
is linearily dependent on depth [8], and so we can replace
E in (1b) by
E=Ey1—z/R,),

where R, is the practical range of the incident electrons
in the beam, and E, is the incident electron energy. The
high-energy approximation (E >>mc?) allows us to write
(1b) as

2 1

(1—z/R,?

Assuming the same initial condition for the solution of
equation (1a) as Yang?,

F(0,x,0,,e,)=8(x)5(®, )5, ) 2)

and taking into account the fact that F(z,x,0,,0)=0
(i.e., the probability measure equals O on the set of identi-
cally equal to zero trajectories of the diffusion process
®,(z) on [0,2)), we find that the Laplace transform F M of
the solution of (la) and (2) with respect to the projected
excess path length variable €, satisfies the equation

mgc

k(z)=k, z
0

(1c)

oF OF, k(z) O°F _
B I z L )
az T ox + 4 9@ 2 OcFy (32)
with the initial condition
F#(O,x,®x)=8(x)8(®x) . (3b)

The Laplace transform function F 1(2,x,0,) is defined ex-
plicitly by

F,(2,x,0,)= fowF(z,x,(Bx,ex Je Hxde,
=L[F(z,x,0,,c,)], 4)

where L represents the Laplace transformation with
respect to €,. For any fixed z, x, and ®, the function
F(z,x,0,,¢,) is a probability density distribution of the
random variable €, and thus belongs to the class of inte-
grable functions L!([0, «)). Consequently, F .(2,x,0,)
defined by (4) is the analytic function in the half-plane
Reu >0.

III. SOLUTION

Equation (3a) is of the same form as a transport equa-
tion previously used by Papiez and Sandison [9] to de-
scribe charged particle penetration in dense media. How-
ever, in Ref. [9] the notation y /2 was used in place of the
constant u, and ¥ had the interpretation of the positive
constant (or positive function of z). To obtain the solu-
tion for (3a) and (3b), where p is a complex parameter
with Reu >0, we first allow ¥ /2 in formula (4.14) of Ref.
[9] to be any positive parameter, and then analytically
continue the function (4.14) of Ref. [9] to the half-plane
Rey>0. This analytic continuation is unique and
amounts to the substitution of y(z)/2 in the general for-
mula (4.14) of Ref. [9] by the complex parameter p,
Rep >0. The resulting function is then the exact solution

of (3a), with u being a complex parameter, such that
Rep>0.
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Case I: Excess path-length density distribution
for all particles at a given depth

We denote the excess path length density distribution
of all particles at depth z as F(z,e). Due to the small-
angle approximation the excess path length € can be writ-
ten as e=¢, +¢,, with &, and ¢, being independent ran-
dom variables. Thus F(z,¢) can be expressed as

F(z,:s)=fF(z,sx,t-:—sx e,
=fF(z,sx)F(z,£—ex)dsx

=F(z,e, )0 F(z,¢,) , (5)
where
F(z,e,)= [ [F(z,x,0,,e,)dx dO, , 6)
F(z,ex,ey)=ffffF(z,x,y,G)x,@y,sx,ey)
Xd©,d®,dx dy (7)

and F(z,e,)o F(z,g,) denotes the convolution of the pro-
jected excess path-length distributions F(z,e,) and
F(z,¢,). Taking the Laplace transform with respect to €
of (5), we obtain

L[F(z,e)]=L[F(z,e,) ) L[F(z,g,)]

=F,(2)F,(2)=F}(2) @)
or
F(z,e)=L"'[Fi(2)], Q)
where
F 2)=L[ [ [F(z,x,0,,c,)dx d©,]
= [ [F,(zx,0,)dx d®, (10)

and L7! denotes the inverse Laplace transform with
respect to u. Formulas (4.14) and (4.3a) of Ref. [9] show
that F,(z,x,0,) is a normalized two-dimensional Gauss-
ian multiplied by a depth-dependent factor C(z,u).
Thus, integrating I_"F(z,x,®x) over x and @®,, we find
from formulas (10) and (9) that

F'#(z)=C(z,u) , (11)
and thus
F(z,e)=.L_‘[C2(z,/,L)] . (12)

The expression for C%(z,u) is [see formulas (4.13c) and
(4.14) of Ref. [9]]

—p [ ke wdz

Clz,pu)=e , (13)

where h (z,u) is the solution to the first-order differential
equation [formula (4.12a) of Ref. [9]]

PG |2z = K2 (14)

with initial condition A (0,u)=0.

An exact closed-form solution of the Ricatti equation
(14) is possible for a function k (z) given by (1c), and can
be written as [10] (formula 1.143)
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h(z,u)=

where
b=ko(moc®)(R,/E,) .
Substituting (15) into (13), we find that

R,(1=z/R,) (14+vVT+2pub )+ (V1+2ub —1)(1—z/R,)" 1T

2V1+2bu(1—z /R,)V 126172

’ (15a)

(15b)

Cz(z,,u)=(l——z/Rp)_'/2

(16)

(1+VT+2bp)+(VT+2bp—1)(1—z /R, )"+ 201

The expression (16), treated as a function of , is the analytic (in the right half-plane Rep > 0) function, which can be ex-

a,(zlp

panded in the series of functions of the type {e 7

,a,(z)—given functions of z, n =1,2,3,. . .}.

If then the in-

verse Laplace transform (12) is applied to this series [11], we obtain the following formula for F(z,¢):

_ _ a(z) &

e 172, —e/s26__8(2)

F(z,e)=(1—z/R,)” e ¢ 126372
n=0

1 had ®
+ 1—z/R,)"" 7' -G
2b7'? ,,2:"0 (( ») fl\/s/Zb +[(2n+1a(2)]/2Ve}

z (_ 1 )n(zn +1)e‘az(z)(2n+l)2/4e

where @(z) and G (c,&,n,u) are defined by the following expressions:

_ |In(1—z/R)IVb

6(2) ‘/2 ’
_ & 26 [ n=D 2 o0 —v )
G(c,e,n,u) ng e l Viv+ 1) (n —v)!

Case II: Excess path length of all particles
traveling perpendicularly to the surface
at a given depth

We denote the excess path-length density distribution
of all particles traveling perpendicularly to the surface at
depth z as F(z,e|®=0). As in case I, we obtain the
equality

F(z,e|®=0)=F(z,¢,|®,=0)0 F(z,e,|®,=0) , (18)

where the right-hand side of (18) denotes the convolution
of the projected excess path-length distributions
F(z,e,|®,=0) and F(z,e,|®,=0), conditional on pro-
jected angles ®, and ®, being equal to zero at depth z,
and ® is the directional vector for the particle
[0=(©,,0,)]. By definition, the conditional probability
density F(z,e,|®, =0) can be written as

_ F(z,0,=0,¢,)
"~ F(z,0,=0)

where F(z,0,=0,¢,) is the function F(z,x,®,,¢,) in-
tegrated over x, with @, set equal to O, while F(z,®, =0)
is the function F(z,x,®,,e,) integrated over x and €,
with ®, set equal to 0. Analogous to (8) for case I, we
obtain from (18) that

F(z,e,1©,=0) , (19)

L[F(z,0=0,¢)]
=L[F(2,0,=0,¢,) L[ F(z,0,=0,¢,)]
=F”(z,®x =O)F#(z,®y =0)
=F(z,0,=0) (20)

(zn;%a—(z)»e,n,u e“zdul, (17a)
(17b)
) 1/2 ) 172 v
€ € € € )
b b u b b c } (17¢)
f
or
F(z,0=0,e)=L"'[F}(z,0,=0)], @21
where
F,(2,0,=0)= [ F,(2,x,0,=0)dx . (22)

The function F .(2,x,0,) is a normalized Gaussian given
by (4.14) of Ref. [9]. Integrating this function with
respect to x and substituting ®, =0 results in the expres-
sion

F“(z,(ax:()):—E—_(f_’____lL , (23)

V2rh(z,u)

Substituting (15) and (16) into (23), (21), and (19), and
then performing the inverse Laplace transform, gives

2zV'b /R,V2)
175 s, €

F(z,e|60=0)= —e/2b
| 71726572
> | @n+1)a4z) ¢
x —_— e — =
2 4 2
X e ~l2n +1)2a%(z) /€] , (24)

where @(z) is given by (17b).
IV. CHECK OF CONSISTENCY AND EXAMPLES

To check the consistency of our results with the previ-
ous results of Yang, we have considered the case when
R,— . In this case the function k(z) given by (Ic) has
the limit k =ko(moc2/E,)? and we expect that our solu-
tion will coincide with Yang’s solution for the constant k
above.
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F(2.5,¢)

k constant with depth

k variable with depth

1 1
0.0 0.2 0.4 0.6 0.8 1.0 1.2
Excess Path length (cm)

FIG. 1. Case I (all electrons): Excess path length distribution
at a depth of 2.5 cm in water for a 10-MeV incident electron
beam.

The limit of the function @(z) given by (17b), when
R,— o is equal to a(z)=zV'k /2. In case I the limit of
the first sum in (17a) gives us exactly the Yang solution

Flze)=—22 5 (—1yan +1)
TE n=0

2 2
a2 +1) ] 05

Xexp 2
€

and the limit of the second sum in (17a) is equal to 0.
In case II the expression zV'b /(R p\/.'z) in (24) is exact-
ly a(z), and as R, — o the formula (24) gives us the sum

. 2a(z) & | @2n+1)laXz) ¢
F(z,e|6=0)= 17257 2 a -3
2 2

X exp _a (z)(ir:+1) . 26)

which is exactly the Yang solution.

To illustrate the effect of the energy dependence of the
angular scattering power k on the excess path-length dis-
tributions F(z,e) and F(z,e|®=0), let us consider the
penetration of electrons in water, the usual dosimetric
medium.

Results have been generated for a monoenergetic beam
of 10-MeV electrons incident upon a homogeneous water
medium at a depth of 2.5 cm, which is approximately
equal to half the practical range. The values of the
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CASE II
18 T T T T T
F(2.5,e|6=0)
15+ -
k constant with depth
12 b 4
9+ 4
6 H 4
3 4
k variable with depth
0 1 1 A
0.0 0.1 0.2 0.3 0.4 0.5 0.6

Excess Path length (cm)

FIG. 2. Case II (electrons traveling perpendicularly to the
surface): Excess path length distribution at a depth of 2.5 cm in
water for a 10-MeV incident electron beam.

different constants in (1¢) in this case are
ko=47.4 cm™'!, R,=4.834 cm, E;=10 MeV .

Figure 1 presents the variation of F(2.5,¢), with € (at
z=2.5 cm) for the case when k is considered constant
with depth, and for the case when k is considered depen-
dent on z according to formula (1c). Notice that for k
dependent on z, the probability of an electron having a
larger excess path length at z =2.5 cm is increased. The
most probable excess path length for the distribution also
increases, i.e., for this example, from 0.06 cm when k is
constant to 0.12 cm when k is dependent on z. The
values of F(2.5, €) were computed using the first seven
terms of the series (17) and (25), respectively. The value
of total probability f o F(2.5,e)de was verified numeri-
cally as being equal to 1.000.

Figure 2 presents the variation of F(2. 5,e|®=0), with
€ (at z=2.5 cm) for the case when k is considered con-
stant with depth, and for the case when k is considered
dependent on z according to formula (Ic). Similarly to
the data for F(2.5,¢), the probability of an electron hav-
ing a larger excess path length at z =2.5 cm is increased
when k is considered dependent on z. The most probable
excess path length for case II is increased in this example
from 0.03 cm when k is constant, to 0.07 cm when k is
dependent on z. The values of F (2.5,6|®=0) for k con-
stant were computed using the first six terms of the series
(24) and (26), respectively. The value of the total proba-
bility f 3°F(2.5,s|®=0)ds was verified numerically as
being equal to 1.000.
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